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ABSTRACT: The carbon nanotube (CNT) structure is a
promising building block for future nanocomposite struc-
tures. Mechanical properties of the electrospun butadiene
elastomer reinforced with CNT are analyzed by multiscale
method. Nanofiber diameter dependence on electric field and
solution concentration is estimated from experimental data.
The fiber microscale effective properties are determined by
homogenization procedure using modified shear-lag model,
while the point-bonded stochastic fibrous network on the

mesoscale replaced by continuum effective sheet. Random
fibrous network was generated according experimentally
determined stochastic quantifiers. The influence of CNT rein-
forcement on elastic modulus of electrospun sheet on macro-
scopic level is determined by finite element method. � 2008
Wiley Periodicals, Inc. J Appl Polym Sci 108: 1191–1200, 2008
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INTRODUCTION

The nanocomposites are expected to be a basic
building element for future materials and structures.
The carbon nanotubes (CNTs) have been proposed
for many potential applications such as high-per-
formance composites, electronic textile, sensors and
nanoscale devices.1 Polymer-CNT composites fasci-
nate with unique mechanical, electrical, wide-range
multifunctional properties. This has several signifi-
cant implications; sensors made from nanofibers
would be more sensitive to stimulants, composite
made from nanofibers will be more efficient in trans-
mitting its loads. The incorporation of CNTs into a
polymer matrix can potentially provide structural
materials with dramatically increased durability and
strength. The addition of CNTs could increase glass
transition, melting, and thermal decomposition tem-
peratures of the polymer matrix. The interfacial
bonding and proper dispersion of the CNTs in the
polymer matrix are two main structural require-
ments. The interfacial shear strength and stress
transfer depend on CNTs specific surface area and
its chemical functionalization. On the other side,
large CNTs surface area result with tendency to ag-
glomerate, bundle together and entangle, what
results many defect sites in the composites, and lim-
iting the efficiency of CNTs on polymer matrices.2

Today, the main challenges are to improve the dis-

persion and interface of CNTs in a polymer matrix
when processing these nanocomposites.3,4 The align-
ment of CNTs in a polymer matrix could be
increased by ex situ alignment due to force, electrical,
and magnetic field induced methods. Today, electro-
spinning has drawn considerable attention due to its
uniqueness in producing CNT containing fibers with
diameter smaller than 100 nm.5 Electrospinning
occurs when the electrical forces at the surface of a
polymer solution overcome the surface tension and
cause an electrically charged jet of polymer solution
to be ejected. A schematic drawing of the electro-
spinning process is shown in Figure 1. The electri-
cally charged jet undergoes a series of electrically
induced instabilities during its passage to the collec-
tion surface which results in complicated stretching
and looping of the jet.6 This stretching process is
accompanied by the rapid evaporation of the solvent
molecules, further reducing the jet diameter. Dry
fibers are accumulated on the surface of the collec-
tor, resulting in a nonwoven mesh of nanofibers. The
process can be adjusted to control the fiber diameter
by varying the processing parameters such as elec-
tric field strength, polymer solution concentration,
and flow rate.7 With an electric-field-controllable tar-
get electrode as a collector the alignment and disper-
sion has been improved.8 This article is organized as
follows. In section Material and Methods is given ba-
sic concepts of CNTs suspension electrospinning.
Microscopic developments for embedding carbon
nanotubes in the fibers together with macroscopic
phenomena for fiber fabrics are discussed. Finally, in
Results and Discussion are given same numerical
and experimental results for this multiscale problem.
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MATERIAL AND METHODS

Experimental

The polymer, a syndiotactic 1-2 polybutadiene elasto-
mer (JSR Co., Tokyo, Japan) has been used for this
study. The carbon nanotube used in this work was
vapor-grown carbon fibers. The CNTs were stirred in
a ball mill for 2 h prior to being used. The elastomer
was dissolved in chloroform. The voltage used was in
the range 15–25 kV, and the distance between electro-
des was 5–20 cm. The diameter of the fiber was meas-
ured by scanning electron microscope (Philips, Eind-
hoven, Holland). The wide-angle X-ray (WAXD) data
were obtained using (Siemens, Karlsruhe, Germany)
diffractometer. Tensile test was conducted on univer-
sal tensile test machine (Zwick, Ulm, Germany).

Fundamentals of electrospinning

The slender-body approximation is widely used in
electrospinning analysis. The replacement 3D axisy-
metric with 1D equivalent jet problem complicate
carbon nanotube-fluid interaction forces on nanole-
vel domain. The applied electric field induced dipole
moment, while torque on the dipole rotate and align
the CNTs with electric field direction. The theories
developed to describe the behavior of the suspension
jet fall into two levels mesoscopic and microscopic.
The mesoscopic governing equations of the electro-
spinning are equation of continuity, conservation of
the charge, balance of momentum, and electric field
equation.

Conservation of mass for the jet requires that6,9
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where E is the axial component of the electric field,
K is the electrical conductivity of the jet, and l is the
surface charge density. The momentum equation for
the fluid can be derived as follows:
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where q is fluid density, sij is deviatoric stress tensor
in fluid, g is the surface tension, and e and e0 are the
dielectric constants of the jet and ambient air respec-
tively. The equation for electric field has the form6
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where r0 is initial jet radius, L is characteristic scale
length, E‘ is the externally imposed constant electric
field. For polymer suspension, stress tensor sij come
from polymeric ŝij and solvent contribution tensor
via constitutive equation

sij ¼ ŝij þ hs � _gij (5)

where hs is solvent viscosity and _gij strain rate ten-
sor. The polymer contribution tensor ŝij depends on
microscopic models of the suspension. Microscopic
approach represents the microstructural features of
material by means of a large number of microme-
chanical elements (beads, springs, rods) obeying sto-
chastic differential equations. The evolution equa-
tions of the microelements arise from a balance of
momentum on the elementary level. The rheological
behavior of the dilute suspension of the CNTs in
polymer matrix can be described as FENE dumbbell
model10

fr̂hQ �Qi ¼ dij � c � hQ:Qi
1� trhQ:Qi=bmax

(6)

where hQ�Qi is the suspension configuration tensor,
c is a spring constant, and bmax is maximum CNT
extensibility. Symbol r̂ represent the upper con-
vected derivative and f denote a relaxation time.
The polymeric stress can be obtained from the fol-
lowing relation

ŝij
nkT

¼ dij � chQ:Qi
1� trhQ:Qi=bmax

(7)

where k is Boltzmann’s constant, T is temperature,
and n is dumbbells density. The jet originates from
the tip of a cone like solution droplet similar to the
Taylor cone. Initially the CNT is randomly oriented,
but due flow in the spinneret cone, they are gradu-

Figure 1 The diagram of the electrospinning process.
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ally oriented along the streamline (see Fig. 2). Rota-
tion motion of a CNTs in a Newtonian flow can be
described as short fiber suspension model as another
rheological model11

dp
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where p is a unit vector in CNT axis direction, xij is
the rotation rate tensor, gij is the deformation tensor,
Dr is the rotary diffusivity, and Y is shape factor.
Orientation probability distribution function w can
be described by the Fokker-Planck equation

@w
@t

þ @

@p
ðw � pÞ ¼ Drr2w (9)

Microscopic models for evolution of suspension
microstructure can be coupled to macroscopic trans-
port equations of mass and momentum to yield
micro–macro models.11 The micro–macro approach
couples the mesoscopic scale of kinetic theory to the
macroscopic scale continuum mechanics. The pres-
ence of the CNTs in the solution contributes to new
form of instability with influences on the formation
of the electrospun mat. The high strain rate on the
nanoscale with complicated microstructure requires
innovative research approach from the computa-
tional modeling point of view. The CNTs suspension
can be described as system consists from a Smolu-
chowski equation for the orientation distribution
function of the nano-rods together with Navier-
Stokes equation for the solvent with an orientation-
dependent stress.12

Microscopic properties

The fiber morphology strongly dependent on impor-
tant electrospinning processing parameters that
affect on and diameter of produced fibrous structure
has been identified by many researches.5,6 The solu-
tion concentration, electric field, spinning distance,
polymer viscosity are some of them. The CNT have

the large aspect ratio (length/radii) beneficial to
their use in composite. Using response surface meth-
odology,13 mean fiber diameter dependence on elec-
tric field and solution concentration can be approxi-
mated by a second-order polynomial model

d¼ A00 þA01 � ĉþA02 � ĉ2 þA10 � V̂þA11 � ĉ � V̂þA20 � V̂2

ĉ¼ c� 1
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where ĉ and V̂ are nondimensional solution concen-
tration and nondimensional electric field, respec-
tively. The numerical values of the coefficients
A00,A01,A02,A10,A11,A20 are determined by nonlinear
regression analysis, fitting surface defined by eq. (10)
across experimental data points. To characterize the
macroscopic properties of the fibrous structure, the
effective properties of the nanofiber on microscale
must be prior determined. The effective properties of
the nanofiber can be determined by homogenization
procedure using representative volume element
(RVE). It is necessary to incorporate more physical
information on microscale in order to precise deter-
mine material behavior model. A concentric compos-
ite cylinder embedded with a caped carbon nano-
tube represents RVE shown on Figure 3. A carbon
nanotube with the length 2‘, radius a is embedded
at the centre of matrix materials with the radius R
and the length 2L.

The discrete atomic nanotube structure replaced
the effective (solid) fiber having the same length and
outer diameter as a discrete nanotube with effective
Young’s nanotube modulus is determined from
atomic structure.14 The stress transfer between fiber
and matrix in RVE is determined using modified
shear-lag model.15 The governing equations for the
axisymmetric problem are
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Figure 2 The CNTs alignment in jet flow. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 3 The nanofiber representative volume element.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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In eqs. (11) rrr, ryy, rzz, and srz are stress tensor
components. The boundary conditions for this prob-
lem of axially loaded fiber, are given by

tmr¼R ¼ 0

tmz¼�L ¼ �ro

(12)

where t is the traction vector, ro was the axial nor-
mal stress uniformly applied on z 5 6L. The super-
scripts m and f denote the matrix and fiber, respec-
tively (see Fig. 3). Using Hook’s law as constitutive
equations between stress and strain

err ¼ 1

E
½rrr � vðruu þ rzzÞ�

ezz ¼ 1
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½rzz � vðrrr þ ruuÞ�
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srz
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and kinematics relationship between strain and dis-
placement,
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the solution of the above given equations yields
distribution stress and strain components under
RVE. The err, eyy, ezz, and grz are stain tensor com-
ponents, u and w are radial and axial displacement
vector components, E,v, and G are, the Young’s
modulus, Poisson’s ratio, and shear modulus of the
material, respectively. For example, in the region
2‘ � z � ‘ axial component of stress tensor
(dimensionless form) for fiber and matrix has the
following form
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The shear-lag parameter14 j has the following form
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For the known stress and strain distribution under
RVE, we can calculate elastic effective properties
quantifiers. The effective axial module Ezz and the
transverse module Exx 5 Eyy can be calculated as
follows:

Ezz ¼ hrzzi
hezzi

Exx ¼ hrxxi
hexxi

(16)

where h i denotes a volume average under volume
V as defined by

hNi ¼ 1

V

Z
v

Nðx; y; zÞ:dV

The Poisson’s ratio is obtained in the same way, for
example

vxy ¼ heyyi
hexxi

(17)

The same can be said for all remaining effective
properties. It is possible in this model to extend to
damage and interphase bonding.16 In all above anal-
yses, CNT is treated as a straight tube, but in reality,
CNT has the form of the curved tubes (see Fig. 2).
The CNTs concentration increase, the surface of the
fibers becomes rougher with local no uniformities
with tendency of the agglomerations. The nanotube
waviness reduces the effective modulus of the com-
posite relative to straight nanotube reinforcement.17

The large deformation extensibility and resilience of
elastomeric matrix, fiber stress-strain constitutive
model require the strain energy density concept use.
In framework anisotropic hyperelastic material, the
strain energy of the fiber as composite, U can be
described as18

U¼
�
1�

X
i

fi

�
�UmatrixðI1; I2; I3Þþ

X
i

fi �UCNTðI4i; I5i; I3Þ

I4i ¼ ai �C � ai; I5i ¼ ai �C2 � ai ð18Þ
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Here, we assume a simple rule of mixture approach
is valid.18 The fi is the volume fraction of CNTs
aligned in the i-th direction, where I1,I2,I3 are invari-
ants of the right Cauchy-Green tensor of deformation
Cij. The CNTs stain energy contribution can be
expressed as sum all CNT fibers with orientation ai,
depend on invariant I4i and I5i as square of the
CNTs stretch in i-th direction. Therefore, fourth-
order elastic tensor for the fiber has the following
form

Dijkl¼4 �
X
n

X
m

@2U

@In@Im

@In
@Cij
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Network macroscopic properties

The major objective in the determination of macro-
scopic properties is the link between atomic and
continuum types of modeling and simulation
approaches. The multiscale method such as quasi-
continuum, bridge method, coarse-grain method,
and dissipative particle dynamics are some popular
mesoscale methods.14 Each CNT is represented as a
chain of connected dissipative particles or flexible
cylinders.19 The main advantage of the mesoscopic
model is its higher computational efficiency than the
molecular modeling without a loss of detailed pro-
perties at molecular level. Peridynamic modeling of
fibrous network is another promising method, which
allows damage, fracture and long-range forces to be
treated as natural components of the deformation of
materials.20 In this article, the macroscopic material
properties are determined by multiscale modelling
approach. In the first stage, effective fiber properties
are determined by homogenization procedure using
modified shear lag model, while in the second stage
the point-bonded stochastic fibrous network at meso-
scale is replaced by continuum plane stress model.

Effective mechanical properties of nanofiber sheets
at the macro scale level can be determined using the
2D Timoshenko beam-network. The critical parame-
ters are the mean number of crossings per nanofiber,
total nanofiber crossing in sheet and mean segment
length.21 Let us first consider a general planar fiber
network characterized by fiber concentration n and
fiber angular and length distribution w(/,‘), where /
and ‘ are fiber orientation angle and fiber length,
respectively. The fiber radius r is considered uniform
and the fiber concentration n is defined as the num-
ber of fiber per unit area. We assumed that / and ‘
are uncorrelated, thus it can be written as

wð/; ‘Þ ¼ w1ð/Þ � w2ð‘Þ (20)

The Poisson probability distribution can be used to
describe the fiber segment lenght distribution for
electrospun fabrics,22 a portion of the fiber between
two neighboring contacts:

f ð‘Þ ¼ 1

‘
expð�‘=‘Þ (21)

where ‘ is the mean segment length. For fiber net-
work made of fibers with uniform lengths ‘0, num-
ber of intersecting fibers with fixed fiber, within an
area k(W)�‘0 1 2r � ‘0 can be estimated as (Fig. 4)

dN ¼ n � ½‘0 � kð#Þ þ ‘0 � 2r� � wð#; ‘Þ � d‘ � d# (22)

Figure 4 The fiber contact analysis.

Figure 5 Fiber network 2D model. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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where k(W) is the projected length of the fixed fiber
on a straight line perpendicular to the fiber with ori-
entation /. Integrating the above relation over all
possible fiber length and orientations yields the aver-
age contact number per fiber. The total number fiber
segments N̂ in the rectangular region b 3 h can be
determined according to

N
_

¼ n � ‘0ðhki þ 2rÞ � 1f g � n � b � h (23)

with

hki ¼
Z /

0

Z ‘

0

wð#; ‘Þ � kð#Þ � d‘ � d#

where the dangled segments at fiber ends have been
excluded.

The fiber network will be deformed in several
ways. The strain energy in fiber segments come from

bending, stretching, and shearing modes of deforma-
tion (see Fig. 5)
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Z Z
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where A is fiber cross-section area and I is fiber
cross-section moment of inertia.

The effective material constants for fiber network
can be determined using homogenization procedure
concept for fiber network. The strain energy fiber
network for representative volume element is equal
to strain energy continuum element with effective
material constant (see Fig. 6). The strain energy of
the representative volume element under plane
stress conditions are

Figure 6 The micro-macro affine transformation.

Figure 7 The finite element model of the fiber net. Figure 8 Hamel flow.
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where V 5 b � h � 2 � r is representative volume ele-
ment, E1,E2,G12,v12 are effective material constants.
The square bracket heiji means macroscopic strain
value. We assume that microscopic deformation ten-
sor of a fiber segments eij is compatible with effec-
tive macroscopic strain heiji of effective continuum,
and therefore we can write

exx ¼ 1

2

�hexxi þ heyyi
�þ 1

2

�hexxi þ heyyi
�
cos 2/

þ hexyi sin 2/

exy ¼ � 1

2

�hexxi � heyyi
�
sin 2/þ hexyi cos 2/ ð26Þ

This is bridge relations between fiber segment micro-
strain eij and macroscopic strain <eij> in the effective
medium.

Finite element method

Effective mechanical properties of nanofiber sheets
at the macro scale level can be determined using the
2D Timoshenko beam-network. Properties of this
nanofibrous structure on the macro scale depend on
the 3D joint morphology. The joints can be modeled
as contact elements with spring and dashpot.21 The
elastic energy of the whole random fiber network
can be calculated numerically, from the local defor-
mation state of the each segment by finite element
method.23 For the random point field, the stochastic

fiber network was generated. The nonload bearing
fiber segments were removed and trimmed to keep
dimensions L 3 L of the representative window
(see Fig. 7). A line representative network model is
replaced by finite element beam mesh. The number
of intersections/unit area and mean lengths are
obtained from image analysis of electrospun sheets.
The elastic energy of the network is then the sum of
the elastic energies of all segments. We consider
here tensile stress, and the fibers are rigidly bonded
to each other at every fiber–fiber crossing points.
The finite element analyses were performed in a
network of 100 fibers, for some CNTs volume frac-
tions values. Nanofibers were modeled as equiva-
lent cylindrical beam as mentioned above. The
problem is reduced to the solution of the linear sys-
tem of equations

�
Ke

� � 	u
 ¼ 	
f



(27)

where are {u} is global displacement vector, {f} is
global nodal force vector, and [Ke] is global stiffness
matrix.

Figure 9 Probability distribution function dependence on
time and orientation. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.
com.]

Figure 10 Fiber diameter dependence on solution concen-
tration and electric field. [Color figure can be viewed in
the online issue, which is available at www.interscience.
wiley.com.]

Figure 11 X-ray spectrum for CNTs composites.
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RESULTS AND DISCUSSION

The quality of the nanofiber depends on the carbon
nanotube distribution and alignments during electro-
spinning. A simple model describing the flow of
CNT dispersed elastomer solution is planar sink
flow in the cone, known as the Hamel flow. For the
Hamel flow the nonzero velocity component is radial

vr ¼ v

r
FðbÞ (28)

where v is the kinematics viscosity of the fluid. The
function F(b) is found as a solution of the Navier-
Stokes equations in the approximate form23

FðbÞ ¼ <e 3 tanh2 � 1

2
<e

8>: 9>;1=2

ða� bÞ þ g

" #
� 2
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g ¼ tanh�1 2

3

8>: 9>;1=2

ð29Þ

Solution eqs. (28) and (29) for Hamel flow in the
cone (see Fig. 8), give the value of the orientation
probability distribution function w along streamline.
For the stream line defined by the angle b 5 a/5, a
5 608, dependence function w on dimensionless time
and angular position are shown on Figure 9. The
Reynolds number was chosen to be Re 5 50.

Experimental data for fiber diameter produced fi-
brous structure depending on solution concentration
and electric field have been identified. The coeffi-
cient in second-order model [eq. (10)] determined by
multiple regression analysis using experimental data

Figure 12 The effective modulus dependence on CNTs
contents. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 13 The effective axial Poisson’s ratio dependence
on CNTs contents. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.
com.]

Figure 14 The stress transfer efficiency. [Color figure can
be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 15 The effective Poisson’s ratio dependence on
fiber density n � ‘20 and aspect ratio ‘0/r. [Color figure can
be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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for electrospinning CNT-butadiene elastomer solu-
tion. For a quadratic model and two factors, we
need nine possible combinations of factor settings.
The contour plots suggesting that the lower concen-
tration together with electric field increase gives
lower fiber diameter. The stationary point is mini-
mum values of the response or the smallest fiber di-
ameter. The surface contours plots of these parame-
ters outline the optimum condition for electrospin-
ning (see Fig. 10).

The WAXD profile of the CNT/elastomer system
is shown in Figure 11. The position at maximum in-
tensity of the diffraction angles, 2W for the four peaks
corresponds to the spacing of 0.65, 0.55, 0.41, and
0.38 nm, respectively. The WAXD profile is influ-

enced by presence of CNTs in system, as crystal
structure changes with presence of CNTs.

The matrix material was considered to be butadi-
ene elastomer, with Em 5 8 MPa and vm 5 0.43.24

The CNT were considered to be isotropic with Ef 5
545 GPa and vf 5 0.3.25 The effective axial modulus
in dimensionless form hEzzi/Em, and the transverse
modulus hExxi/Em on micro level, for the range of
volume CNTs fractions are shown in Figure 12. The
hExxi is greatly influenced by the presence of CNTs,
while hEyyi is insensitive to CNTs, due to the matrix
presence three orders smaller modulus. The Pois-
son’s ratio indicates similar behavior trend. The
effective axial Poisson’s ratio is shown in Figure 13.

The ratio between maximum normal stress rmax

and maximum shear stress smax, d 5 rmax/smax, is of
great importance among many others. This parame-
ter d characterizes the efficiency of transferring shear
stress into tensile stress through a tube-matrix inter-
face. Figure 14 shows the variation of d with the
tube aspect ratio ‘/a and nanotube volume fraction
R/a. The large d allows a high tensile stress to be
obtained at a relatively low shear stress level, to
reduce the possibility of matrix failure.

The influence of two macroscopic parameters on
effective properties is illustrated by Figure 15. The
Figure 15 shows the effective Poisson ratio sheets de-
pendence on fiber concentration n‘20 and fiber aspect
ratio ‘0/r. For random planar network, i.e.,
w1ð/Þ ¼ 1

p, the effective Young modulus hEi, and
Poisson ratio hvi, after homogenization procedure
have the following form

Figure 16 The stress-strain curve. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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where Em is fiber matrix modulus.
Finite element analyses were performed for com-

puter generated network of 100 fibers. The compari-
son of calculated data with experimental data for
nanotube sheet shows some discrepancies (Fig. 16).
A rough morphological network model for the
sheets can explain this on the one hand and simple
joint morphology on the other hand.22,26 The finite
element program should be extending to large dis-
placement and deformation. The generated mesh is
visually inspected and compared with SEM picture

in order to prevent high discrepancies between
model and experiment.

CONCLUSION

The remarkable properties of electrospun CNTs
nanocomposites continue to draw attention in the
development of multifunctional properties of nano-
structures for many applications. The electrospinning
process has extended with model for CNTs suspen-
sion behavior in the jet flow. Fiber diameter depend-
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ence on electric field and solution estimated from
experimental data. Multiscale model for calculation
macroscopic mechanical properties for fibrous sheet is
developed on two stages. Effective properties of the
fiber at microscale are determined by homogenization
using modified shear-lag model, while in the second
stage the point-bonded stochastic fibrous network
at mesoscale are replaced by continuum equivalent
sheet. Elastic modulus and Poisson’s ratio depend-
ence on CNT volume concentration are calculated.
Effective properties fibrous sheet as random stochastic
network are determined analytically and numerically.
We conclude that an addition of CNTs into the poly-
mer solution results not always with significant
improvement of rheological and structural properties.

NOTATION

a carbon nanotube radii
ai orientation vector
A beam cross-section area
c spring constant
Cij Cauchy-Green deformation tensor
d fiber diameter
Dr rotary diffusion
Dijkl fourth order elastic tensor
E Young’s modulus of elasticity
Ef elastic modulus of the carbon nano-

tube
Em elastic modulus of the matrix
E‘ externally imposed electric field
fi volume fraction
G shear modulus
I1, I2, I3 invariants of the deformation tensor
I beam cross-section moment of inertia
K electrical conductivity
k Boltzmann constant
‘ carbon nanotube length
n dumbbells density
p unit vector
R matrix radii of CNT orientation
rrr, ryy, rzz, components of stress tensor
Q configuration vector
t traction vector
u radial displacement
U strain energy density
v velocity vector
V electric field
w axial displacement
d Kronecker delta tensor
err, eyy, erz, ezz, components of strain tensor

heiji macroscopic strain tensor
e0 dielectric constant of the air
_gij deformation rate tensor
g surface tension
Y shape factor
j shear-lag parameter
q fluid density
l surface charge density
v, v12, v21 Poisson’s ratio
xij vortices tensor
hs solvent viscosity
C probability distribution function
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